Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Microsyst Nanoeng ; 10: 58, 2024.
Article in English | MEDLINE | ID: mdl-38725436

ABSTRACT

This work presents a single-structure 3-axis Lorentz force magnetometer (LFM) based on an AlN-on-Si MEMS resonator. The operation of the proposed LFM relies on the flexible manipulation of applied excitation currents in different directions and frequencies, enabling the effective actuation of two mechanical vibration modes in a single device for magnetic field measurements in three axes. Specifically, the excited out-of-plane drum-like mode at 277 kHz is used for measuring the x- and y-axis magnetic fields, while the in-plane square-extensional mode at 5.4 MHz is used for measuring the z-axis magnetic field. The different configurations of applied excitation currents ensure good cross-interference immunity among the three axes. Compared to conventional capacitive LFMs, the proposed piezoelectric LFM utilizes strong electromechanical coupling from the AlN layer, which allows it to operate at ambient pressure with a high sensitivity. To understand and analyze the measured results, a novel equivalent circuit model for the proposed LFM is also reported in this work, which serves to separate the effect of Lorentz force from the unwanted capacitive feedthrough. The demonstrated 3-axis LFM exhibits measured magnetic responsivities of 1.74 ppm/mT, 1.83 ppm/mT and 6.75 ppm/mT in the x-, y- and z-axes, respectively, which are comparable to their capacitive counterparts.

2.
Adv Sci (Weinh) ; : e2400479, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696643

ABSTRACT

Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

3.
BMC Genomics ; 25(1): 392, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649819

ABSTRACT

BACKGROUND: The pituitary directly regulates the reproductive process through follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Transcriptomic research on the pituitaries of ewes with different FecB (fecundity Booroola) genotypes has shown that some key genes and lncRNAs play an important role in pituitary function and sheep fecundity. Our previous study found that ewes with FecB + + genotypes (without FecB mutation) still had individuals with more than one offspring per birth. It is hoped to analyze this phenomenon from the perspective of the pituitary transcriptome. RESULTS: The 12 Small Tail Han Sheep were equally divided into polytocous sheep in the follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular phase (MF), and monotocous sheep in the luteal phase (ML). Pituitary tissues were collected after estrus synchronous treatment for transcriptomic analysis. A total of 384 differentially expressed genes (DEGs) (182 in PF vs. MF and 202 in PL vs. ML) and 844 differentially expressed lncRNAs (DELs) (427 in PF vs. MF and 417 in PL vs. ML) were obtained from the polytocous-monotocous comparison groups in the two phases. Functional enrichment analysis showed that the DEGs in the two phases were enriched in signaling pathways known to play an important role in sheep fecundity, such as calcium ion binding and cAMP signaling pathways. A total of 1322 target relationship pairs (551 pairs in PF vs. MF and 771 pairs in PL vs. ML) were obtained for the target genes prediction of DELs, of which 29 DEL-DEG target relationship pairs (nine pairs in PF vs. MF and twenty pairs in PL vs. ML). In addition, the competing endogenous RNA (ceRNA) networks were constructed to explore the regulatory relationships of DEGs, and some important regulatory relationship pairs were obtained. CONCLUSION: According to the analysis results, we hypothesized that the pituitary first receives steroid hormone signals from the ovary and uterus and that VAV3 (Vav Guanine Nucleotide Exchange Factor 3), GABRG1 (Gamma-Aminobutyric Acid A Receptor, Gamma 1), and FNDC1 (Fibronectin Type III Domain Containing 1) played an important role in this process. Subsequently, the reproductive process was regulated by gonadotropins, and IGFBP1 (Insulin-like Growth Factor Binding Protein 1) was directly involved in this process, ultimately affecting litter size. In addition, TGIF1 (Transforming Growth Factor-Beta-Induced Factor 1) and TMEFF2 (Transmembrane Protein With EGF Like And Two Follistatin Like Domains 2) compensated for the effect of the FecB mutation and function by acting on TGF-ß/SMAD signaling pathway, an important pathway for sheep reproduction. These results provided a reference for understanding the mechanism of multiple births in Small Tail Han Sheep without FecB mutation.


Subject(s)
Pituitary Gland , RNA, Long Noncoding , RNA, Messenger , Animals , Sheep/genetics , Pituitary Gland/metabolism , Female , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fertility/genetics , Reproduction/genetics , Gene Expression Profiling , Transcriptome
4.
Int J Biol Macromol ; 269(Pt 2): 131803, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670205

ABSTRACT

Melatonin plays an important role in mammalian reproductive activities, to further understand the effects of endogenous melatonin on functions of ovary, the transgenic sheep with overexpression of melatonin synthetic enzyme gene ASMT in ovary were generated. The results showed that total melatonin content in follicular fluid of transgenic sheep was significantly greater than that in the wild type. Accordingly, the follicle numbers of transgenic sheep were also significantly greater than those in the WT. The results of follicular fluid metabolites sequencing showed that compared with WT, the differential metabolites of the transgenic sheep were significantly enriched in several signaling pathways, the largest number of metabolites was lipid metabolism pathway and the main differential metabolites were lipids and lipoid molecules. SMART-seq2 were used to analyze the oocytes and granulosa cells of transgenic sheep and WT sheep. The main differential enrichment pathway was metabolic pathway, in which lipid metabolism genes accounted for the majority. In conclusion, this is the first report to show that ovary overexpression of ASMT increased local melatonin production and follicle numbers. These results may imply that ASMT plays an important role in follicle development and formation, and melatonin intervention may be a potential method to promote this process.

5.
Adv Sci (Weinh) ; 11(12): e2303518, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234204

ABSTRACT

Silk fibroin (SF) is a natural material with polymorphic structures that determine its water solubility and biodegradability, which can be altered by exposing it to heat. Here, a hybrid thermal lithography method combining scalable microscale laser-based patterning with nanoscale patterning based on thermal scanning probe lithography is developed. The latter enables in addition grayscale patterns to be made. The resolution limit of the writing in silk fibroin is studied by using a nanoscale heat source from a scanned nanoprobe. The heat thereby induces local water solubility change in the film, which can subsequently be developed in deionized water. Nanopatterns and grayscale patterns down to 50 nm lateral resolution are successfully written in the silk fibroin that behaves like a positive tone resist. The resulting patterned silk fibroin is then applied as a mask for dry etching of SiO2 to form a hard mask for further nano-processing. A very high selectivity of 42:1 between SiO2 and silk fibroin is obtained allowing for high-aspect ratio structure to be fabricated. The fabricated nanostructures have very low line edge roughness of 5 ± 2 nm. The results demonstrate the potential of silk fibroin as a water-soluble resist for hybrid thermal lithography and precise micro/nanofabrication.


Subject(s)
Fibroins , Nanostructures , Fibroins/chemistry , Water/chemistry , Silicon Dioxide , Nanostructures/chemistry , Hot Temperature
6.
Animals (Basel) ; 14(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38254366

ABSTRACT

Circular RNAs (circRNAs) are a specific type of noncoding RNA, and some have defined roles in cellular and biological processes. However, little is known about the role of circRNAs in follicular development in sheep with FecB (fecundity Booroola) mutations. Here, the expression profiles of circRNAs were investigated using RNA sequencing (RNA-seq) in the follicular phase (F) and the luteal phase (L) of FecB mutant homozygous (BB) and wild-type (WW) Small Tail Han sheep. A total of 38,979 circRNAs were identified, and 314, 343, 336, and 296 of them were differentially expressed (DE) between BB_F and BB_L, WW_F and WW_L, BB_F and WW_F, and BB_L and WW_L, respectively. The length, type, and chromosome distribution of the circRNAs and the expression characteristic between the circRNAs and their host genes in the sheep hypothalamus were ascertained. Enrichment analysis showed that the host genes of DE circRNAs in the follicular and luteal phases were annotated to MAPK, gap junctions, progesterone-mediated oocyte maturation, oocyte meiosis, and other hormone-related signaling pathways, and the different FecB genotypes were annotated to the gap junctions, circadian entrainment, MAPK, and other hormone-related signaling pathways. The competing endogenous RNA network prediction revealed that the 129 target miRNAs might be bound to 336 DE circRNAs. oar_circ_0000523 and oar_circ_0028984, which were specifically expressed during the follicular phase in the BB genotype sheep, probably acted as miRNA sponges involved in the regulation of LH synthesis and secretion. This study reveals the expression profiles and characterization of circRNAs at two phases of follicular development considering different FecB genotypes, thereby providing an improved understanding of the roles of circRNAs in the sheep hypothalamus and their involvement in follicular development and ovulation.

7.
Adv Sci (Weinh) ; 11(5): e2305467, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059813

ABSTRACT

The fast development of flexible and wearable electronics increases the demand for flexible secondary batteries, and the emerging high-performance K-ion batteries (KIBs) have shown immense promise for the flexible electronics due to the abundant and cost-effective potassium resources. However, the implementation of flexible cathodes for KIBs is hampered by the critical issues of low capacity, rapid capacity decay with cycles, and limited initial Coulombic efficiency. To address these pressing issues, a freestanding K-rich iron hexacyanoferrate/carbon cloth (KFeHCF/CC) electrode is designed and fabricated by cathodic deposition. This innovative binder-free and self-supporting KFeHCF/CC electrode not only provides continuous conductive channels for electrons, but also accelerates the diffusion of potassium ions through the active electrode-electrolyte interface. Moreover, the nanosized potassium iron hexacyanoferrate particles limit particle fracture and pulverization to preserve the structure and stability during cycling. As a result, the K-rich KFeHCF/CC electrode shows a reversible discharging capacity of 110.1 mAh g-1 at 50 mA g-1 after 100 cycles in conjunction with capacity retention of 92.3% after 1000 cycles at 500 mA g-1 . To demonstrate the commercial feasibility, a flexible tubular KIB is assembled with the K-rich KFeHCF/CC electrode, and excellent flexibility, capacity, and stability are observed.

8.
Adv Sci (Weinh) ; 11(2): e2305201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949674

ABSTRACT

The zinc ion battery (ZIB) as a promising energy storage device has attracted great attention due to its high safety, low cost, high capacity, and the integrated smart functions. Herein, the working principles of smart responses, smart self-charging, smart electrochromic as well as smart integration of the battery are summarized. Thus, this review enables to inspire researchers to design the novel functional battery devices for extending their application prospects. In addition, the critical factors associated with the performance of the smart ZIBs are comprehensively collected and discussed from the viewpoint of the intellectualized design. A profound understanding for correlating the design philosophy in cathode materials and electrolytes with the electrode interface is provided. To address the current challenging issues and the development of smart ZIB systems, a wide variety of emerging strategies regarding the integrated battery system is finally prospected.

9.
Commun Biol ; 6(1): 1077, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872364

ABSTRACT

Hypertrophy and fiber transformation are two prominent features of postnatal skeletal muscle development. However, the role of epigenetic modifications is less understood. ATAC-seq, whole genome bisulfite sequencing, and RNA-seq were applied to investigate the epigenetic dynamics of muscle in Hu sheep at 3 days, 3 months, 6 months, and 12 months after birth. All 6865 differentially expressed genes were assigned into three distinct tendencies, highlighting the balanced protein synthesis, accumulated immune activities, and restrained cell division in postnatal development. We identified 3742 differentially accessible regions and 11799 differentially methylated regions that were associated with muscle-development-related pathways in certain stages, like D3-M6. Transcription factor network analysis, based on genomic loci with high chromatin accessibility and low methylation, showed that ARID5B, MYOG, and ENO1 were associated with muscle hypertrophy, while NR1D1, FADS1, ZFP36L2, and SLC25A1 were associated with muscle fiber transformation. Taken together, these results suggest that DNA methylation and chromatin accessibility contributed toward regulating the growth and fiber transformation of postnatal skeletal muscle in Hu sheep.


Subject(s)
Epigenesis, Genetic , Muscle, Skeletal , Animals , Sheep/genetics , Muscle, Skeletal/metabolism , Chromatin/genetics , Chromatin/metabolism , Muscle Development/genetics , Hypertrophy/metabolism
10.
Animals (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37684975

ABSTRACT

CircRNAs have been found to play key roles in many biological processes and have diverse biological functions. There have been studies on circRNAs in sheep pituitary, and some important circRNAs have been found. But there are still few studies on circRNAs in sheep pituitary with different fecundity. In this study, we obtained the circRNAs expression profiles in the pituitary of FecB ++ genotype Small Tail Han sheep with different fecundity and estrous phases. A total of 34,878 circRNAs were identified in 12 pituitary samples, 300 differentially expressed circRNAs (DE circRNAs) (down: 104; up: 196) were identified in polytocous sheep in the follicular phase (PF) and monotocous sheep in the follicular phase (MF) (PF vs. MF), and 347 DE circRNAs (down: 162; up: 185) were identified in polytocous sheep in the luteal phase (PL) and monotocous sheep in the luteal phase (ML) (PL vs. ML). Cortisol synthesis and secretion pathway (follicular phase) and estrogen signaling pathway (luteal phase) were obtained by functional enrichment analysis of circRNAs source genes. Competing endogenous RNA (ceRNA) network analysis of key DE circRNAs revealed that oar-circ-0022776 (source gene ITPR2, follicular phase) targeted oar-miR-432, oar-circ-0009003 (source gene ITPR1, luteal phase) and oar-circ-0003113 (source gene PLCB1, luteal phase) targeted oar-miR-370-3p. We also explored the coding ability of DE circRNAs. In conclusion, our study shows that changes in the pituitary circRNAs may be related to the response of the pituitary to steroid hormones and regulate the reproductive process of sheep by affecting the pituitary function. Results of this study provide some new information for understanding the functions of circRNAs and the fecundity of FecB ++ genotype sheep.

11.
iScience ; 26(8): 107249, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37502261

ABSTRACT

In the context of industry 4.0, automatic sorting is becoming prevalent in production lines. Herein, we developed a bionic sensing system to achieve real-time object recognition. The system consists of 9 single-layer triboelectric nanogenerators (SL-TENGs) as touch sensors and 3 comb-shaped TENGs (CS-TENGs) as bending sensors, with a sensitivity of 110 V/kPa and stable output after 20,000 press cycles. These sensors were attached to a manipulator composed of three soft actuators, serving as soft robotic fingers. An enhanced electrical output of these sensors was achieved successfully, demonstrating their feasibility in detecting grasping location, contact pressure, and bending curvature. A one-dimensional convolutional neural network (1D-CNN) with 98.96% accuracy extracted information from the sensors, enabling the manipulator to serve as an intelligent sensing system with multi-modality perception ability. This robotic manipulator successfully integrated TENG-based self-powered sensors, soft actuators, and artificial intelligence, demonstrating the potential for future digital twin applications, particularly in automatic component sorting.

12.
Microsyst Nanoeng ; 9: 94, 2023.
Article in English | MEDLINE | ID: mdl-37484504

ABSTRACT

Wireless sensor network nodes are widely used in wearable devices, consumer electronics, and industrial electronics and are a crucial component of the Internet of Things (IoT). Recently, advanced power technology with sustainable energy supply and pollution-free characteristics has become a popular research focus. Herein, to realize an unattended and reliable power supply unit suitable for distributed IoT systems, we develop a high-performance triboelectric-electromagnetic hybrid nanogenerator (TEHNG) to harvest mechanical energy. The TEHNG achieves a high load power of 21.8 mW by implementing improvements of material optimization, configuration optimization and pyramid microstructure design. To realize a self-powered integrated microsystem, a power management module, energy storage module, sensing signal processing module, and microcontroller unit are integrated into the TEHNG. Furthermore, an all-in-one wireless multisensing microsystem comprising the TEHNG, the abovementioned integrated functional circuit and three sensors (temperature, pressure, and ultraviolet) is built. The milliwatt microsystem operates continuously with the TEHNG as the only power supply, achieving self-powered operations of sensing environmental variables and transmitting wireless data to a terminal in real time. This shows tremendous application potential in the IoT field.

13.
Bioeng Transl Med ; 8(4): e10428, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476053

ABSTRACT

In vitro diagnostics (IVD) plays a critical role in healthcare and public health management. Magnetic digital microfluidics (MDM) perform IVD assays by manipulating droplets on an open substrate with magnetic particles. Automated IVD based on MDM could reduce the risk of accidental exposure to contagious pathogens among healthcare workers. However, it remains challenging to create a fully automated IVD platform based on the MDM technology because of a lack of effective feedback control system to ensure the successful execution of various droplet operations required for IVD. In this work, an artificial intelligence (AI)-empowered MDM platform with image-based real-time feedback control is presented. The AI is trained to recognize droplets and magnetic particles, measure their size, and determine their location and relationship in real time; it shows the ability to rectify failed droplet operations based on the feedback information, a function that is unattainable by conventional MDM platforms, thereby ensuring that the entire IVD process is not interrupted due to the failure of liquid handling. We demonstrate fundamental droplet operations, which include droplet transport, particle extraction, droplet merging and droplet mixing, on the MDM platform and show how the AI rectify failed droplet operations by acting upon the feedback information. Protein quantification and antibiotic resistance detection are performed on this AI-empowered MDM platform, and the results obtained agree well with the benchmarks. We envision that this AI-based feedback approach will be widely adopted not only by MDM but also by other types of digital microfluidic platforms to offer precise and error-free droplet operations for a wide range of automated IVD applications.

14.
Langmuir ; 39(30): 10660-10669, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37466176

ABSTRACT

Self-assembly is an important bottom-up fabrication approach based on accurate manipulation of solid-air-liquid interfaces to construct microscale structures using nanoscale materials. This approach plays a substantial role in the fabrication of microsensors, nanosensors, and actuators. Improving the controllability of self-assembly to realize large-scale regular micro/nano patterns is crucial for this approach's further development and wider applications. Herein, we propose a novel strategy for patterning nanoparticle arrays on soft substrates. This strategy is based on a unique process of liquid film rupture self-assembly that is convenient, precise, and cost-efficient for mass manufacturing. This approach involves two key steps. First, suspended liquid films comprising monolayer polystyrene (PS) spheres are realized via liquid-air interface self-assembly over prepatterned microstructures. Second, these suspended liquid films are ruptured in a controlled manner to induce the self-assembly of internal PS spheres around the morphological edges of the underlying microstructures. This nanoparticle array patterning method is comprehensively investigated in terms of the effect of the PS sphere size, morphological effect of the microstructured substrate, key factors influencing liquid film-rupture self-assembly, and optical transmittance of the fabricated samples. A maximum rupture rate of 95.4% was achieved with an optimized geometric and dimensional design. Compared with other nanoparticle-based self-assembly methods used to form patterned arrays, the proposed approach reduces the waste of nanoparticles substantially because all nanoparticles self-assemble around the prepatterned microstructures. More nanoparticles assemble to form prepatterned arrays, which could strengthen the nanoparticle array network without affecting the initial features of prepatterned microstructures.

15.
Genes (Basel) ; 14(6)2023 06 20.
Article in English | MEDLINE | ID: mdl-37372481

ABSTRACT

Sheep growth performance, mainly skeletal muscle growth, provides direct economic benefits to the animal husbandry industry. However, the underlying genetic mechanisms of different breeds remain unclear. We found that the cross-sectional area (CSA) of skeletal muscle in Dorper (D) and binary cross-breeding (HD) was higher than that in Hu sheep (H) from 3 months to 12 months after birth. The transcriptomic analysis of 42 quadriceps femoris samples showed that a total of 5053 differential expression genes (DEGs) were identified. The differences in the global gene expression patterns, the dynamic transcriptome of skeletal muscle development, and the transcriptome of the transformation of fast and slow muscles were explored using weighted correlation network analysis (WGCNA) and allele-specific expression analysis. Moreover, the gene expression patterns of HD were more similar to D rather than H from 3 months to 12 months, which might be the reason for the difference in muscle growth in the three breeds. Additionally, several genes (GNB2L1, RPL15, DVL1, FBXO31, etc.) were identified as candidates related to skeletal muscle growth. These results should serve as an important resource revealing the molecular basis of muscle growth and development in sheep.


Subject(s)
Muscle, Skeletal , Transcriptome , Pregnancy , Female , Sheep/genetics , Animals , Transcriptome/genetics , Muscle, Skeletal/metabolism , Gene Expression Profiling , Parturition
16.
Int J Bioprint ; 9(4): 732, 2023.
Article in English | MEDLINE | ID: mdl-37323503

ABSTRACT

Aging is inevitable, and how to age healthily is a key concern. Additive manufacturing offers many solutions to this problem. In this paper, we first briefly introduce various 3D printing technologies commonly used in the biomedical field, particularly in aging research and aging care. Next, we closely examine aging-related health conditions of nervous system, musculoskeletal system, cardiovascular system, and digestive system with a focus on the application of 3D printing in these fields, including the creation of in vitro models and implants, production of drugs and drug delivery systems, and fabrication of rehabilitation and assistive medical devices. Finally, the opportunities, challenges, and prospects of 3D printing in the field of aging are discussed.

17.
Chem Asian J ; 18(10): e202300108, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37010076

ABSTRACT

A novel layered magnesium phosphate (MgP) was synthesised from a MgO-P2 O5 -choline chloride-oxalic acid dihydrate system using an ionothermal approach. Single crystal samples of MgP were obtained following introduction of diethylamine (DEA) to the reaction system. Its structure revealed that both the layer and the sheets contained Mg octahedra. Interestingly, adding the layered material to lithium grease resulted in superior lubrication with higher load-carrying, anti-wear and friction reduction capacities compared with the typical lubricant MoS2 ; the PB value of base grease was increased from 353 to 1078 and 549 N, the wear scar diameter was decreased from 0.50 to 0.34 and 0.46 mm, and the friction coefficient was decreased from 0.082 to 0.056 and 0.075, respectively. We also discuss the lubrication mechanism of layered materials based on the crystal structure and resource endowment. The findings could assist the development of new high-efficiency solid lubricants.

18.
Front Vet Sci ; 10: 1119312, 2023.
Article in English | MEDLINE | ID: mdl-37065235

ABSTRACT

Introduction: Myostatin (MSTN) negatively regulates skeletal muscle development. However, its function in reproductive performance and visceral organs has not been thoroughly investigated. Previously, we prepared a MSTN and fibroblast growth factor 5 (FGF5) double-knockout sheep, which was a MSTN and FGF5 dual-gene biallelic homozygous (MF-/-) mutant. Methods: To understand the role of MSTN and FGF5 in reproductive performance and visceral organs, this study evaluated the ejaculation amount, semen pH, sperm motility, sperm density, acrosome integrity, rate of teratosperm, and seminal plasma biochemical indicators in adult MF-/- rams. We also compared the overall morphology, head, head-neck junction, middle segment and the transection of middle segment of spermatozoa between wildtype (WT) and MF-/- rams. Results: Our results showed that the seminal plasma biochemical indicators, sperm structure and all sperm indicators were normal, and the fertilization rate also has no significant difference between WT and MF-/- rams, indicating that the MF-/- mutation did not affect the reproductive performance of sheep. Additional analysis evaluated the histomorphology of the visceral organs, digestive system and reproductive system of MF+/- sheep, the F1 generation of MF-/-, at the age of 12 months. There was an increased spleen index, but no significant differences in the organ indexes of heart, liver, lung, kidney and stomach, and no obvious differences in the histomorphology of visceral organs, digestive system and reproductive system in MF+/- compared with WT sheep. No MF+/- sheep were observed to have any pathological features. Discussion: In summary, the MSTN and FGF5 double-knockout did not affect reproductive performance, visceral organs and digestive system in sheep except for differences previously observed in muscle and fat. The current data provide a reference for further elucidating the application of MSTN and FGF5 double-knockout sheep.

19.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(10): 1252-1260, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37028377

ABSTRACT

Aluminum nitride (AlN)-on-Si MEMS resonators operating in Lamb wave modes have found wide applications for physical sensing and frequency generation. Due to the inherent layered structure, the strain distributions of Lamb wave modes become distorted in certain cases, which could benefit its potential application for surface physical sensing. This article investigates the strain distributions of fundamental and 1st-order Lamb wave modes (i.e., S0, A0, S1 , and A1 modes) associated with their piezoelectric transductions in a group of AlN-on-Si resonators. The devices were designed with notable changes in normalized wavenumber resulting in resonant frequencies ranging from 50 to 500 MHz. It is shown that the strain distributions of four Lamb wave modes vary quite differently as normalized wavenumber changes. In particular, it is found that the strain energy of the A1 -mode resonator tends to concentrate on the top surface of the acoustic cavity as the normalized wavenumber increases, while that of the S0 -mode device becomes more confined in the central area. By electrically characterizing the designed devices in four Lamb wave modes, the effects of vibration mode distortion on resonant frequency and piezoelectric transduction were analyzed and compared. It is shown that designing A1 -mode AlN-on-Si resonator with identical acoustic wavelength and device thickness benefits its surface strain concentration as well as piezoelectric transduction, which are both demanded for surface physical sensing. We herein demonstrate a 500-MHz A1 -mode AlN-on-Si resonator with a decent unloaded quality factor ( [Formula: see text]) and low motional resistance ( [Formula: see text]) at atmospheric pressure.

20.
Front Microbiol ; 14: 1075164, 2023.
Article in English | MEDLINE | ID: mdl-36876076

ABSTRACT

Introduction: Toll-like receptor 4 (TLR4) identifies Gram-negative bacteria or their products and plays a crucial role in host defense against invading pathogens. In the intestine, TLR4 recognizes bacterial ligands and interacts with the immune system. Although TLR4 signaling is a vital component of the innate immune system, the influence of TLR4 overexpression on innate immune response and its impact on the composition of the intestinal microbiota is unknown. Methods: Here, we obtained macrophages from sheep peripheral blood to examine phagocytosis and clearance of Salmonella Typhimurium (S. Typhimurium) in macrophages. Meanwhile, we characterized the complex microbiota inhabiting the stools of TLR4 transgenic (TG) sheep and wild-type (WT) sheep using 16S ribosomal RNA (rRNA) deep sequencing. Results: The results showed that TLR4 overexpression promoted the secretion of more early cytokines by activating downstream signaling pathways after stimulation by S. Typhimurium. Furthermore, diversity analysis demonstrated TLR4 overexpression increased microbial community diversity and regulated the composition of intestinal microbiota. More importantly, TLR4 overexpression adjusted the gut microbiota composition and maintained intestinal health by reducing the ratio of Firmicutes/Bacteroidetes and inflammation and oxidative stress-producing bacteria (Ruminococcaceae, Christensenellaceae) and upregulating the abundance of Bacteroidetes population and short-chain fatty acid (SCFA)-producing bacteria, including Prevotellaceae. These dominant bacterial genera changed by TLR4 overexpression revealed a close correlation with the metabolic pathways of TG sheep. Discussion: Taken together, our findings suggested that TLR4 overexpression can counteract S. Typhimurium invasion as well as resist intestinal inflammation in sheep by regulating intestinal microbiota composition and enhancing anti-inflammatory metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...